53 research outputs found

    Automated Glaucoma Detection Using Hybrid Feature Extraction in Retinal Fundus Images

    Get PDF
    Glaucoma is one of the most common causes of blindness. Robust mass screening may help to extend the symptom-free life for affected patients. To realize mass screening requires a cost-effective glaucoma detection method which integrates well with digital medical and administrative processes. To address these requirements, we propose a novel low cost automated glaucoma diagnosis system based on hybrid feature extraction from digital fundus images. The paper discusses a system for the automated identification of normal and glaucoma classes using higher order spectra (HOS), trace transform (TT), and discrete wavelet transform (DWT) features. The extracted features are fed to a support vector machine (SVM) classifier with linear, polynomial order 1, 2, 3 and radial basis function (RBF) in order to select the best kernel for automated decision making. In this work, the SVM classifier, with a polynomial order 2 kernel function, was able to identify glaucoma and normal images with an accuracy of 91.67%, and sensitivity and specificity of 90% and 93.33%, respectively. Furthermore, we propose a novel integrated index called Glaucoma Risk Index (GRI) which is composed from HOS, TT, and DWT features, to diagnose the unknown class using a single feature. We hope that this GRI will aid clinicians to make a faster glaucoma diagnosis during the mass screening of normal/glaucoma images

    Texture Features of Proton Density Fat Fraction Maps from Chemical Shift Encoding-Based MRI Predict Paraspinal Muscle Strength

    Get PDF
    Texture analysis (TA) has shown promise as a surrogate marker for tissue structure, based on conventional and quantitative MRI sequences. Chemical-shift-encoding-based MRI (CSE-MRI)-derived proton density fat fraction (PDFF) of paraspinal muscles has been associated with various medical conditions including lumbar back pain (LBP) and neuromuscular diseases (NMD). Its application has been shown to improve the prediction of paraspinal muscle strength beyond muscle volume. Since mean PDFF values do not fully reflect muscle tissue structure, the purpose of our study was to investigate PDFF-based TA of paraspinal muscles as a predictor of muscle strength, as compared to mean PDFF. We performed 3T-MRI of the lumbar spine in 26 healthy subjects (age = 30 ± 6 years; 15 females) using a six-echo 3D spoiled gradient echo sequence for chemical-shift-encoding-based water–fat separation. Erector spinae (ES) and psoas (PS) muscles were segmented bilaterally from level L2–L5 to extract mean PDFF and texture features. Muscle flexion and extension strength was measured with an isokinetic dynamometer. Out of the eleven texture features extracted for each muscle, Kurtosis(global) of ES showed the highest significant correlation (r = 0.59, p = 0.001) with extension strength and Variance(global) of PS showed the highest significant correlation (r = 0.63, p = 0.001) with flexion strength. Using multivariate linear regression models, Kurtosis(global) of ES and BMI were identified as significant predictors of extension strength (R2adj = 0.42; p < 0.001), and Variance(global) and Skewness(global) of PS were identified as significant predictors of flexion strength (R2adj = 0.59; p = 0.001), while mean PDFF was not identified as a significant predictor. TA of CSE-MRI-based PDFF maps improves the prediction of paraspinal muscle strength beyond mean PDFF, potentially reflecting the ability to quantify the pattern of muscular fat infiltration. In the future, this may help to improve the pathophysiological understanding, diagnosis, monitoring and treatment evaluation of diseases with paraspinal muscle involvement, e.g., NMD and LBP

    Application of infrared thermography in computer aided diagnosis

    Get PDF
    The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care
    • …
    corecore